在财务管理中,递延年金现值的计算是一个重要的知识点。递延年金是指第一次收付发生在第二期或第二期以后的年金。那么,递延年金现值究竟怎么算呢?
递延年金现值的计算方法有两种。一种是先将递延年金视为普通年金,求出递延期期末的现值,然后再将该现值折现到第一期期初。具体计算公式为:(P=Atimes(P/A,i,n)times(P/F,i,m)),其中(P)为递延年金现值,(A)为年金数额,(i)为利率,(n)为年金期数,(m)为递延期数。
另一种方法是先求出(m+n)期的年金现值,再扣除递延期(m)期的年金现值。计算公式为:(P=Atimes[(P/A,i,m+n)-(P/A,i,m)])。
为了更好地理解递延年金现值的计算,我们通过一个例子来进行说明。假设某递延年金,从第(3)年末开始,每年年末支付(1000)元,连续支付(5)年,利率为(5%)。按照第一种方法,先计算第(2)年末的现值:(1000times(P/A,5%,5)=1000times4.3295=4329.5)(元),然后将其折现到第(0)年末:(4329.5times(P/F,5%,2)=4329.5times0.9070=3926.86)(元)。按照第二种方法,计算(7)期的年金现值:(1000times(P/A,5%,7)=1000times5.7864=5786.4)(元),再计算前(2)期的年金现值:(1000times(P/A,5%,2)=1000times1.8594=1859.4)(元),最后用前者减去后者:(5786.4-1859.4=3927)(元)。可以看出,两种方法的计算结果是相近的。
递延年金现值的计算虽然有一定的难度,但只要掌握了正确的方法和公式,就能够准确地进行计算。通过实际的例子进行练习,可以更好地理解和掌握这一知识点。